MAT: Logarithms Solutions

1. What is $\log _{7} 2400$ rounded to the nearest integer?

We can have $\log _{7} 343=3$ and $\log _{7} 2401=4$. Since $\log _{7} x$ increases as x increases, we know that $\log _{7} 343<\log _{7} 2400<\log _{7} 2401$, meaning $3<\log _{7} 2400<4$. Moreover, we can see that 2400 is much closer to 2401 than to 343 , so it stands to reason that $\log _{7} 2400$ rounded to the nearest integer is 4 .
2. Evaluate $\log _{4} 32$.

Let $x=\log _{4} 32$. Then, we must have $4^{x}=32$. Writing both 4 and 32 with 2 as the base gives $\left(2^{2}\right)^{x}=2^{5}$, so $2^{2 x}=2^{5}$. Therefore, we must have $2 x=5$, so $x=5 / 2$.
3. If r, s, and t are constants such that $\frac{x^{r-2} \cdot y^{2 s} \cdot z^{3 t+1}}{x^{2 r} \cdot y^{s-4} \cdot z^{2 t-3}}=x y z$ for all non-zero x, y, and z, then solve for $r^{s} \cdot t$. Express your answer as a fraction.

First, we should solve for r, s, and t. From what is given, we know that $\frac{x^{r-2}}{x^{2 r}}=x, \frac{y^{2 s}}{y^{s-4}}=y$, and $\frac{z^{3 t+1}}{z^{2 t-3}}=z$. Solving for r, s, and t we have:

$$
\begin{aligned}
r-2=2 r+1 & \Rightarrow r=-3 \\
2 s=s-4+1 & \Rightarrow s=-3 \\
3 t+1=2 t-3+1 & \Rightarrow t=-3
\end{aligned}
$$

Solving for $r^{s} \cdot t$, we have $(-3)^{-3} \cdot-3=\frac{-1}{27} \cdot-3=$| $\frac{1}{9}$ |
| :---: |
| . | .

4. How many distinct four-tuples (a, b, c, d) of rational numbers are there with

$$
a \cdot \log _{10} 2+b \cdot \log _{10} 3+c \cdot \log _{10} 5+d \cdot \log _{10} 7=2005 ?
$$

We can write the given equation as

$$
\log _{10} 2^{a}+\log _{10} 3^{b}+\log _{10} 5^{c}+\log _{10} 7^{d}=2005
$$

Then

$$
\log _{10}\left(2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d}\right)=2005
$$

so $2^{a} \cdot 3^{b} \cdot 5^{c} \cdot 7^{d}=10^{2005}$.
Since a, b, c, d are all rational, there exists some positive integer M so that $a M, b M, c M, d M$ are all integers. Then

$$
2^{a M} \cdot 3^{b M} \cdot 5^{c M} \cdot 7^{d M}=10^{2005 M}=2^{2005 M} \cdot 5^{2005 M}
$$

From unique factorization, we must have $a M=2005 M, b M=0, c M=2005 M$, and $d M=0$. Then $a=2005, b=0, c=2005$, and $d=0$. Thus, there is only 1 quadruple, namely $(a, b, c, d)=$ (2005, 0, 2005, 0).
5. Solve for the rational numbers x and y :

$$
2^{x+y} \cdot 3^{x-y} \cdot 6^{2 x+2 y}=72
$$

Express your answer as an ordered pair (x, y).

Combining the bases on the left side, we obtain

$$
2^{x+y} 3^{x-y} 2^{2 x+2 y} 3^{2 x+2 y}=2^{3 x+3 y} 3^{3 x+y}=2^{3} 3^{2}
$$

Then, by setting exponents equal to each other, we obtain the simultaneous equations

$$
\begin{aligned}
3 x+3 y & =3 \\
3 x+y & =2 .
\end{aligned}
$$

Subtracting the second equation from the first, we obtain $2 y=1 \Longrightarrow y=\frac{1}{2}$, and plugging $y=\frac{1}{2}$ back in, we get $x=\frac{1}{2}$. So, $(x, y)=(1 / 2,1 / 2)$.
6. How many integers $-11 \leq n \leq 11$ satisfy $(n-2)(n+4)(n+8)<0$?

Since $(n-2)(n+4)(n+8)=0$ when $n=2,-4$, or -8 , we will consider the four cases $-11 \leq n<-8$, $-8<n<-4,-4<n<2$, and $2<n \leq 11$ separately. If $n=2, n=-4$, or $n=-8$, then all three factors are 0 . If $n>2$, then all three factors are positive. If $-4<n<2$, then $n-2$ is negative, while the other two factors are positive, so the product is negative. If $-8<n<-4$, then $n+8$ is positive, while the other two factors are negative, so the product is positive. If $n<-8$, then all three factors are negative, so the product is negative. In total, there are 8 solutions: $-11,-10,-9,-3,-2,-1,0,1$.
7. Find the sum of all the solutions to

$$
\left(3 \log _{4}\left(\log _{3} x\right)\right)\left(2 \log _{64}\left(\log _{3} x\right)-1\right)=-1
$$

Let $y=\log _{3} x$. Then the equation becomes

$$
\left(3 \log _{4} y\right)\left(2 \log _{64} y-1\right)=-1
$$

By the change-of-base formula,

$$
\log _{64} y=\frac{\log _{4} y}{\log _{4} 64}=\frac{\log _{4} y}{3}
$$

so

$$
\left(3 \log _{4} y\right)\left(\frac{2}{3} \cdot \log _{4} y-1\right)=-1
$$

Let $z=\log _{4} y$, so $(3 z)\left(\frac{2}{3} z-1\right)=-1$. This simplifies to $2 z^{2}-3 z+1=0$, which factors as $(z-1)(2 z-1)=0$. The solutions are $z=1$ and $z=\frac{1}{2}$. Then the possible values of y are $4^{1}=4$ and $4^{1 / 2}=2$, and the possible values of x are $3^{4}=81$ and $3^{2}=9$. The sum of the solutions is then $81+9=90$.
8. Let x, y, and z be real numbers such that

$$
\begin{aligned}
& \log _{2}\left(x y z-3+\log _{5} x\right)=5 \\
& \log _{3}\left(x y z-3+\log _{5} y\right)=4 \\
& \log _{4}\left(x y z-3+\log _{5} z\right)=4
\end{aligned}
$$

Find $x y z$.

From the given equations,

$$
\begin{aligned}
x y z-3+\log _{5} x & =32 \\
x y z-3+\log _{5} y & =81 \\
x y z-3+\log _{5} z & =256 .
\end{aligned}
$$

Adding these equations, we get

$$
3 x y z-9+\log _{5} x+\log _{5} y+\log _{5} z=369
$$

which turns into

$$
3 x y z+\log _{5}(x y z)=378
$$

Consider the function

$$
f(t)=3 t+\log _{5} t
$$

Since both $3 t$ and $\log _{5} t$ are increasing functions, the function $f(t)$ is also increasing. Furthermore,

$$
f(125)=3 \cdot 125+\log _{5} 125=378
$$

so $t=125$ is the unique solution to $3 t+\log _{5} t=378$. Hence, $x y z=125$.
With some more work, we can show that $x=\frac{1}{5^{90}}, y=\frac{1}{5^{41}}$, and $z=5^{134}$.
9. Let $f(x)=\log _{b} x$, and let $g(x)=x^{2}-4 x+4$. given that $f(g(x))=g(f(x))=0$ has exactly one solution and that $b>1$, compute b.

We can write $g(x)=x^{2}-4 x+4=(x-2)^{2}$. Thus,

$$
\log _{b}\left[(x-2)^{2}\right]=\left(\log _{b} x-2\right)^{2}=0
$$

From the equation $\log _{b}\left[(x-2)^{2}\right]=0,(x-2)^{2}=1$, so $x=1$ or $x=3$.
From the equation $\left(\log _{b} x-2\right)^{2}=0, \log _{b} x=2$, so $x=b^{2}$.
The only possibility is then $x=3$ and $b=\sqrt{3}$.
10. Let x, y, and z all exceed 1 , and let w be a positive number such that $\log _{x} w=24, \log _{y} w=40$, and $\log _{x y z} w=12$. Find $\log _{z} w$.

We have the identity $\log _{b} a=\frac{1}{\log _{a} b}$, so

$$
\log _{w} x=\frac{1}{24}, \quad \log _{w} y=\frac{1}{40}, \quad \text { and } \quad \log _{w}(x y z)=\frac{1}{12}
$$

Now, since

$$
\log _{w}(x y z)=\log _{w} x+\log _{w} y+\log _{w} z
$$

we have

$$
\frac{1}{12}=\frac{1}{24}+\frac{1}{40}+\log _{w} z
$$

so $\log _{w} z=\frac{1}{12}-\frac{1}{24}-\frac{1}{40}=\frac{1}{60}$. Then

$$
\log _{z} w=\frac{1}{\log _{w} z}=60
$$

