MAT: Logarithms

1. What is $\log _{7} 2400$ rounded to the nearest integer?
2. Evaluate $\log _{4} 32$.
3. If r, s, and t are constants such that $\frac{x^{r-2} \cdot y^{2 s} \cdot z^{3 t+1}}{x^{2 r} \cdot y^{s-4} \cdot z^{2 t-3}}=x y z$ for all non-zero x, y, and z, then solve for $r^{s} \cdot t$. Express your answer as a fraction.
4. How many distinct four-tuples (a, b, c, d) of rational numbers are there with

$$
a \cdot \log _{10} 2+b \cdot \log _{10} 3+c \cdot \log _{10} 5+d \cdot \log _{10} 7=2005 ?
$$

5. Solve for the rational numbers x and y :

$$
2^{x+y} \cdot 3^{x-y} \cdot 6^{2 x+2 y}=72
$$

Express your answer as an ordered pair (x, y).
6. How many integers $-11 \leq n \leq 11$ satisfy $(n-2)(n+4)(n+8)<0$?
7. Find the sum of all the solutions to

$$
\left(3 \log _{4}\left(\log _{3} x\right)\right)\left(2 \log _{64}\left(\log _{3} x\right)-1\right)=-1
$$

8. Let x, y, and z be real numbers such that

$$
\begin{aligned}
& \log _{2}\left(x y z-3+\log _{5} x\right)=5 \\
& \log _{3}\left(x y z-3+\log _{5} y\right)=4 \\
& \log _{4}\left(x y z-3+\log _{5} z\right)=4
\end{aligned}
$$

Find $x y z$.
9. Let $f(x)=\log _{b} x$, and let $g(x)=x^{2}-4 x+4$. given that $f(g(x))=g(f(x))=0$ has exactly one solution and that $b>1$, compute b.
10. Let x, y, and z all exceed 1 , and let w be a positive number such that $\log _{x} w=24, \log _{y} w=40$, and $\log _{x y z} w=12$. Find $\log _{z} w$.

